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A B S T R A C T

Storing hydrogen underground for cyclic injection/retrieval may help move the world towards a decarbonised
economy. In search of suitable long-term reservoirs, the potential reactivity of the matrix with hydrogen plays a
major role. This is especially poignant for carbonate minerals, due to their abundance, ubiquity, and much faster
dissolution kinetics compared to silicates. Geochemical modelling studies invariably find hydrogen-induced
reductive carbonate dissolution and methane production (HIRCDAMP) whereas experimental studies, for the
most part, do not support this view. To answer the question of how far injected hydrogen may oxidise, protonate
and cause reductive dissolution of carbonates, a thermodynamic approach based on standard redox and overall
cell potentials, as well as Gibbs free energies, was chosen. Together with observations on kinetic constraints, a
consistent picture emerges in which purely inorganically driven reduction of (bi)carbonate to methane by
hydrogen oxidation is not likely to occur. Rather, the formation of intermediate carbon species (e.g., formate)
could be a kinetically and thermodynamically more favourable pathway than that to methane. It follows that
geochemical models that question the long-term viability of hydrogen injection into carbonate-bearing reservoirs
need to be revised, toning down any alleged, yet by experimental studies not substantiated, hydrogen reactivity
in the absence of any catalyst and/or microbial activity.

1. Introduction

Underground hydrogen storage (UHS), when based on hydrogen
produced by the surplus of renewable energies, is being considered a
promising tool to usher in an era of low carbon economy (Hanley et al.,
2018). The studies reviewing the major technical hurdles of and op-
portunities for UHS have proliferated to a bewildering degree in recent
years (Epelle et al., 2022; Hanley et al., 2018; Heinemann et al., 2021;
Hematpur et al., 2023; Miocic et al., 2023; Muhammed et al., 2022; Pan
et al., 2021; Raza et al., 2022; Sambo et al., 2022; Tarkowski, 2019;
Tarkowski and Uliasz-Misiak, 2022; Thiyagarajan et al., 2022; Zivar
et al., 2021). Among them features the quest of finding a suitable
reservoir combining a connected large storage volume, enabling
repeated quantitative hydrogen injection/retrieval cycles, with a tight
overlying seal to keep the buoyant and diffusive hydrogen gas safely
underground. Like in the case of carbon storage, much effort has been
focused on deep saline aquifers and depleted oil and gas reservoirs
(Krevor et al., 2023; Muhammed et al., 2022; Pan et al., 2021;

Reitenbach et al., 2015; Zeng et al., 2023; Zivar et al., 2021). Most of the
associated rock matrices will contain carbonates, either as primary
phases (e.g., limestone or dolomite formations) or secondary phases (e.
g., carbonates formed during diagenetic or post-diagenetic alterations of
magmatic minerals and rock cementation). Whatever their origin and
abundance, carbonate minerals are chemically far less stable than sili-
cates and their associated siliciclastic matrices and thus more prone to
chemical mobilisation, potentially induced by injection of hydrogen
underground. Carbonates are hence of particular interest and concern
when anticipating the long-term stability of any carbonate-bearing or
cemented hydrogen storage reservoir. Alas, the literature on the reac-
tivity of carbonates in the presence of hydrogen is inconsistent. A couple
of experimental studies conclude that the presence of dissolved
hydrogen promotes carbonate dissolution. Flesch et al. (2018) observed
carbonate (and anhydrite) cement alteration of Triassic/Permian sand-
stones in the presence of hydrogen. Similarly, Bensing et al. (2022) re-
ported hydrogen-induced calcite dissolution in claystones. These
experimental findings are backed by numerical simulations that
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invariably end up dissolving carbonates in the presence of hydrogen. For
example, Hassannayebi et al. (2019) carried out geochemical modelling
on a case site and found carbonates (dolomite and ankerite) dissolving
within months, and concomitant hydrogen loss. Likewise, Bo et al.
(2021), using geochemical modelling, reported calcite dissolution
induced by hydrogen dissociation and fluid protonation, resulting in the
loss of up to 9.5% hydrogen from a sedimentary reservoir rich in calcite
cement. Similarly, Zeng et al. (2022) concluded after numerical
modelling that carbonate reservoirs may not be suitable for long-term
storage due to sustained loss of hydrogen via carbonate dissolution
and methane production. On the same modelling premises and out-
comes, Zhan et al. (2024) suggested focusing UHS on sandstone reser-
voirs where the absence of reactive carbonate phases would cause less
hydrogen loss. Finally, another modelling study established that sand-
stone is a suitable UHS as long as the amount of calcite in the sandstone
is not significant (Gholami, 2023). In contrast, other experimental
studies do not substantiate this modelling pathway. Al-Yaseri et al.
(2023) did not detect any methane via gas chromatography (GC) after
four months of intimate hydrogen-limestone interaction at 100 bar pH2
and 75 ◦C, an observation in accordance with Hassanpouryouzband
et al. (2022), a source that carried out over 250 batch experiments with
H2(aq) on six different sandstone matrices, all containing varying wt%
abundances of calcite and/or dolomite. That study went over two to six
weeks and did not report a single occurrence of methane in their GC
analyses either. Furthermore, reacting hydrogen, albeit in its gaseous
rather than dissolved state, with either CO2(g) (Sabatier reaction) or
diverse carbonate minerals to generate methane has proven to occur
only under high P-T conditions (hundreds of MPa and ◦C) and/or in the
presence of specific catalytic surfaces (Giardini and Salotti, 1969;
Jagadeesan et al., 2009; Mao et al., 2022; Peng et al., 2021; Rönsch
et al., 2016; Scott et al., 2004; Yoshida et al., 1999). These P-T condi-
tions are considerably above what can be expected under UHS reservoir
conditions -and numerical simulations. A recent advance in this dis-
cussion comes from Gelencsér et al. (2023) who carried out a combined
experimental-modelling study investigating the reactivity of hydrogen
on calcite. Their batch experiments under elevated hydrogen storage
conditions (105 ◦C, 100 bar) found no chemical or morphological
indication of increased calcite dissolution in hydrogen atmosphere
compared to blank results with nitrogen. The authors went on to carry
out PHREEQC modelling of their experiments, resulting in extensive
calcite dissolution and methane formation and concluded that thermo-
dynamic databases of geochemical modelling must be reviewed for UHS.
However, the study remains empirical in its approach and does not
provide any explanation for the inconsistency other than observing that
reductive carbonate dissolution in the presence of hydrogen only pro-
ceeds in the presence of a catalyst (e.g., Pd), not expected to be present
in the UHS reservoir, or at T-P conditions not realised in UHS settings.
Given the apparent discrepancy in deducing the potential (or lack
thereof) of reductive dissolution and methanation in the presence of
hydrogen, this paper sets out to explore this matter further, from a
thermodynamic point of view. Its aim is to provide a theoretical footing
for the likelihood of hydrogen-induced reductive carbonate dissolution
and methane production (the acronym HIRCDAMP will be used in the
remainder of the text). This theoretical foundation is key in character-
ising the link between underground hydrogen storage/retrieval and
hydrogen loss via reductive carbonate dissolution so important for a
successful transition towards a decarbonised economy.

2. Theoretical background

Given that T and P can be assumed constant in a given potential
storage reservoir for hydrogen, the most useful thermodynamic poten-
tial that will inform on the spontaneity of a geochemical reaction is the
Gibbs energy G. At standard conditions (25 ◦C, gases acting ideally and
at a pressure of 1 bar and solutes acting ideally and at a concentration of
1 mol, which translates in the system considered in this paper as pO2 and

pH2 = 1 and pH = 0), the change in Gibbs energy ΔrGo of a chemical
reaction can be computed from the standard free Gibbs energies of
formation of the different elements:

ΔrGo =
∑

i
ζi.ΔfG0i , (1)

where i refers to the element i, ζi to its stoichiometric coefficient and
ΔfG0i to its standard free Gibbs energies of formation, tabulated in da-
tabases such as the NIST Standard Reference Database (NIST, 2013).
Most often, Gibbs energies are recast in the guise of the equilibrium
constants K for a particular chemical reaction. K is related to the stan-
dard Gibbs energy of reaction by:

ΔrGo = − RTln(K) = − 2.303 RT log(K) (2)

with R being the gas constant and T the temperature in Kelvin.
For redox species, it is common to work with the potential difference

measured in an electrolytic cell. The standard potential E0 of the cell is
obtained from the standard Gibbs energy of reaction by:

ΔrGo = − nF E0 = − nF
(
E0Red − E0Ox

)
(3)

with n being the number of electrons exchanged between the reducing
and oxidising species, F the Faraday constant, E0Red the standard half-cell
potential associated with the reduction and E0Ox the standard half-cell
potential associated with the oxidation.

Standard quantities are tabulated reference points used to infer the
thermodynamic driving force of the chemical reactions. However,
hydrogen storage reservoirs containing carbonates will exhibit condi-
tions far from the standard ones, with pH rather alkaline and pH2 far
greater than 1 bar. For a given chemical system, with gases at partial
pressures pgi, solutes at molalities mi and temperature T (different from
298 K), the Gibbs energy of reaction is then:

ΔrGT = ΔrG0T + 2.303 RTlog(Q) = − 2.303 RT log(KT/Q) (4)

with

Q =
∏

i
pζi
gi .m

νi
i (5)

and

ΔrG0T = − 2.303 RTlog(KT) =
∑

i
ζi.ΔfG0T,i (6)

ΔfG0T,i= ΔfG0298,i − Δf S0298,i (T − 298) (7)

with ζi and νi the stoichiometric coefficients of gas i and solute i,
respectively. Eq. (6) assumes that Δf S0298,i, the entropy of the formation
of each compound i, is constant over the temperature range considered.
Δf S0298,i can be computed from their enthalpies of formation and free
Gibbs energy of formation:

Δf S0i,298 =
ΔfG0298 − ΔfH0298

298
(8)

Similarly, the redox potential at temperature T can be calculated by
the expression below, known as the Nernst Equation:

ET = E0T − 2.303
RT
nF
log(Q) (9)

with

ΔrG0T = − nFE0T (10)

Expressions (4) and (9) show that the Gibbs energies of reactions (or
equivalently the redox potentials) will be a function of the partial
pressure of H2 and pH (and of any other gases or solutes present in the
reservoir).

In the following paragraphs, we will use this thermodynamical
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framework to investigate the likelihood of reductive carbonate disso-
lution and methanation reactions in typical conditions found in UHS.
But first, we will discuss what we can learn from Pourbaix diagrams and
standard thermodynamic quantities and then compare HIRDCAMP at
low versus high partial pressure of H2.

3. Theoretical deliberations

It is instructive to start the thermodynamic discussion with a review
of the Pourbaix diagram of water (Fig. 1). The stability field of water is
bounded by two lines that represent the redox reactions of water. Under
acidic conditions, the oxidation and reduction of water are written as:

O2(g) +4H+ +4 e− = 2H2O (11)

and

2H+ +2e− = H2(g) (12)

while under alkaline conditions, these reactions become:

O2(g) +2H2O+4 e− = 4OH− (13)

and

2H2O+4 e− = H2(g) +2OH− (14)

The upper stability limit of water (i.e., under highly oxidising con-
ditions) is set by the oxidation of oxygen bound in water under acidic
conditions (Eq. (11)) and the oxidation of oxygen bound in hydroxide
under alkaline conditions (Eq. (13)). In both cases, oxidation results in
the formation of elemental gaseous oxygen (O2(g)). Its lower stability
limit (i.e., under highly reducing conditions) is defined by the reduction
of protons (more properly, hydrogen bound in hydronium) under acidic
conditions (Eq. (12)) and the reduction of hydrogen bound in water
under alkaline conditions (Eq. (14)). In both cases, reduction results in
the formation of elemental gaseous hydrogen (H2(g)). At standard con-
ditions (25 ◦C, pO2 and pH2 = 1 bar, pH = 0), the redox potential cor-
responds to the standard reduction potential when the slope of the
Nernst equation (− 0.059⋅pH) crosses the vertical axis at pH= 0, yielding
Eh = E0. This is pertinent to this discussion because to understand the
driving force of Eq. (12), which describes the reactive nature of dis-
solved hydrogen and its potential to act as an acid and reducing agent,

one must consider the reduction potential in solution, in particular,
whether Eq. (12) can drive HIRCDAMP (or any other reduction for this
matter). Thermodynamically, this is indicated by showing a lower
electron affinity, i.e., a lower reduction potential, compared to that for
carbonate reduction. As Eq. (12) describes the standard hydrogen elec-
trode (SHE), whose reduction potential E0 is arbitrarily set at 0 V (y-
intercept at pH 0 in Fig. 1), any positive reduction potential for a car-
bonate species is equivalent to the overall cell potential (and thus
electromotive force) and indicates a spontaneous reaction. Conversely, a
negative reduction potential vs. SHE indicates the opposite, i.e., no
thermodynamic driving force for (inorganic) carbon to be reduced to a
more organic species. Pertinent standard reduction potentials (E◦) for
the reduction of various carbon species were collated in Table 1.

Standard reduction potentials (E◦), and consequently derived equi-
librium constants K provided in databases, are based on highly acidic
conditions (pH = 0), in relation to which most HIRCD are thermody-
namically favourable. However, reservoirs with carbonates will present
rather neutral to alkaline pH conditions, e.g. Bagci et al. (2000); Kharaka
and Hanor (2003). Under such basic conditions, it seems more appro-
priate to use Eq. (14) in Fig. 1. This reaction corresponds conceptually to
SHE, but in a one mole OH− solution (pH 14). Given the alkalising na-
ture of carbonates, this approach of reacting a surplus of hydroxide with
dissolved hydrogen appears more appropriate for the ensuing discussion
than starting with a pH 0 solution. Note, the reduction potential for Eq.
(14) at pH 14 is − 0.828 V vs. SHE (y-intercept at pH 14), indicating a
strong thermodynamic preference for the oxidation of this half-reaction
(i.e., H2(g) to H2O). It also means the E in Table 1 will shift to more
negative values by the same token of 0.828 V (EOH− ) for a pH of 14. As
such, the reduction of carbonates under alkaline conditions takes place
at more negative reduction potentials. In fact, if Eq. (12) were allowed to
proceed as oxidation (i.e., hydrogen loss), and any alkaline carbonate
reaction in Table 1 as reduction (as expected by HIRCD), the overall
standard cell potential (Ecell = Er - Eox) would be equal to EOH- (=Er)
because Eox of Eq. (12) is 0 V. Based on that hypothetical Ecell, the
resulting Gibb's free energy of the overall HIRCD at pH 14 (values in bold
in Table 1) would be consistently positive and, noticeably, quite large for
methane production (last row in Table 1). That would mean an ender-
gonic and non-spontaneous redox reaction for HIRCDAMP, requiring
energy to start and sustain. However, the presence and quantity of
various gases (and in particular H2) and other species will also influence
the values of the redox potentials in a particular system such as a po-
tential reservoir for UHS. In the following text, the relationship between
Eh and pH as a function of molal species concentrations has been
exploited to map out in more detail the thermodynamic conditions
under which HIRCDAMP is favourable. Rather than Eh, however, the
associated Gibbs free energy change to the system was chosen (Eq. 3).

4. Results and discussion

4.1. Case 1, HIRCDAMP at low H2 partial pressure

In Fig. 2, the free Gibbs energies of reaction have been computed for
five HIRCDAMP cases (see Table 2) using Eqs. (1), (4) with the values of
standard free Gibbs energies tabulated in Table 1A (appendix). They
represent conditions for a nominal environment composed of a brine at
25 ◦C and 1 bar, in contact with carbonate minerals (calcite, dolomite,
siderite and ankerite). This brine contains Ca2+, Fe2+, Mg2+and total
inorganic carbon (DIC) at 1 mmol/kg, CH4(g) at a partial pressure of 1
mbar and H2(g) at a partial pressure of 1 μbar. Activity coefficients have
been taken equal to 1 due to the low ionic strength of the system. Fig. 2
shows that HIRCDAMP is thermodynamically favourable at acidic pH
and non-spontaneous at alkaline conditions. To make matters worse,
increasing temperatures, such as expected under hydrogen injection,
will also decrease reduction potentials. The red dashed lines in Fig. 1
indicate how the stability field of water changes as the slopes dip to-
wards lower Ehwith increasing pH. This change in slopes stems from the

Fig. 1. Pourbaix diagram of water showing its stability field as a function of the
redox potential Eh (in V) over the entire pH range, at pO2 and pH2 = 1. The
black and red lines confine the stability field of water at 25 ◦C and 75 ◦C,
respectively.
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T-dependence of the thermal voltage given by the Nernst equation and
can be calculated as − 2.8e− 3 V/◦C for water, under alkaline conditions.

For the carbon system, Ryu et al. (1972) found a temperature
gradient of − 1.05e− 3 V/◦C for the following pertinent reaction from
carbon dioxide to formate:

CO2(g) +H2O+2 e− = HCOO− +OH− (15)

While this may not seem much, it means a decrease in EOH− from
− 0.708 V at 10 ◦C to − 0.760 V at 60 ◦C and translates into an increase in
the already positiveΔG by 10 kJ/mol. Note that a higher partial pressure
of CH4 will increase ΔG similarly. It follows that Eq. (12) is not

substantiated by thermodynamic considerations under high pH and T
regimes, when the partial pressure of H2 is low.

4.2. Case 2, HIRCDAMP under injection conditions

While increasing pH and T create thermodynamic trends uncon-
ducive for HIRCDAMP, this observation depends on the amount of
hydrogen present and holds only at very low pH2. With increasing
quantities of H2(aq), the ΔGr-pH system shifts towards more negative, i.
e., exergonic conditions under all pH. This is shown in Fig. 3a, an exact
copy of Fig. 2 but at 5 bar pH2. UHS will certainly take place at higher
hydrogen pressures where ΔGr becomes even more negative. This cor-
relation between ΔGr and pH2 is based on the fact that, under standard

Table 1
Reduction reactions with corresponding standard reduction potentials related to hydrogen induced (bi)carbonate reduction, Gibbs free energies and logarithmic
equilibrium constant K. Gibbs free energy at standard conditions of each reduction reaction, ΔG0, have been computed using Eq. (1) and Gibbs free energies of
formation that are listed in Table 1A (appendix). Under alkaline conditions, ΔG is thus positive (in bold font, also reported per reacted mole H2 in the penultimate
column). Standard potentials for the reduction reactions written under acidic conditions (noted E◦H+) and under alkaline conditions (noted E◦OH− ) have then been
computed fromΔG0 and Eq. 10. For EOH− , it is equivalent to subtracting 0.828 V from E◦H+ (see text for explanation). Overall standard cell potentials (E◦cell) have been
calculated assuming Eq. (12) as oxidation reaction under acidic conditions (E◦ox= 0 V) and Eq. (14) under alkaline conditions (Eox= 0.828 V), respectively. Under such
consistent conditions, E◦cell are equal irrespective of the pH. The overall redox reaction (left column) has been added, together with the calculated logarithmic
equilibrium constant K (Eq. 2) to emphasise the importance of the pH regime for its appropriate expression. The Log K in bold font in the last column describes again
inconsistent conditions, where E◦cell corresponds to EOH− .

Overall redox reaction Reduction Reaction E◦H+ (V) EOH− (V) Ecell (V) ΔG (kJ/mol) ΔG/H2 (kJ/mol) Log K

2HCO3− + H2 = C2O4− 2 + 2H2O 2HCO3− + 2H+ + 2e− = C2O4− 2 + 2H2O − 0.17 − 0.170 33 33 − 5.7
2HCO3− + H2 = C2O4− 2 + 2H2O 2HCO3− + 2e− = C2O4− 2 + 2OH− − 0.998 − 0.170 193 193 ¡33.7
2CO3− 2 + H2 + 2H+ = C2O4− 2 + 2H2O 2 CO3− 2 + 4H+ + 2e− = C2O4− 2 + 2H2O 0.441 0.441 − 85 − 85 14.9
2CO3− 2 + H2 = C2O4− 2 + 2OH− 2 CO3− 2 + 2H2O + 2e− = C2O4− 2 + 4OH- − 0.387 0.441 75 75 ¡13.1
HCO3− + H2 = HCOO− + H2O HCO3− + 2H+ + 2e− = HCOO− + H2O − 0.078 − 0.078 15 15 − 2.6
HCO3− + H2 = HCOO− + H2O HCO3− + H2O + 2e− = HCOO− + 2OH- − 0.906 − 0.078 175 175 ¡30.6
CO3− 2 + H2 + H+ = HCOO− + H2O CO3− 2 + 3H+ + 2e- = HCOO− + H2O 0.227 0.227 − 44 − 44 7.7
CO3− 2 + H2 = HCOO- + OH− CO3− 2 + 2H2O + 2e− = HCOO− + 3OH− − 0.601 0.227 116 116 ¡20.3
HCO3− + 2H2 + H+ = C + 3H2O HCO3− + 5H+ + 4e− = C + 3H2O 0.323 0.323 − 125 − 62 21.8
HCO3− + 2H2 = C + 2H2O + OH− HCO3− + 2H2O + 4e− = C + 5OH− − 0.505 0.323 195 97 ¡34.1
CO3− 2 + 2 H2 + 2H+ = C + 3H2O CO3− 2 + 6H+ + 4e− = C + 3H2O 0.475 0.475 − 183 − 92 32.1
CO3− 2 + 2H2 = C + H2O + 2OH− CO3− 2 + 3H2O + 4e− = C + 6OH− − 0.353 0.475 136 68 ¡23.9
HCO3− + 2H2 + H+ = HCOH +2H2O HCO3− + 5H+ + 4e− = HCOH +2H2O 0.044 0.044 − 17 − 8 3.0
HCO3− + 2H2 = HCOH + H2O + OH− HCO3− + 3H2O + 4e− = HCOH +5OH− − 0.784 0.044 303 151 ¡53.0
CO3− 2 + 2H2 + 2H+ = HCOH +2H2O CO3− 2 + 6H+ + 4e− = HCOH +2H2O 0.197 0.197 − 76 − 38 13.3
CO3− 2 + 2H2 = HCOH +2OH− CO3− 2 + 4H2O + 4e− = HCOH +6OH− − 0.631 0.197 244 122 ¡42.7
HCO3− + 3H2 + H+ = CH3OH + 2H2O HCO3− + 7H+ + 6e− = CH3OH + 2H2O 0.107 0.107 − 62 − 21 10.9
HCO3− + 3H2 = CH3OH + H2O + OH− HCO3− + 5H2O + 6e− = CH3OH + 7OH− − 0.721 0.107 417 139 ¡73.1
CO3− 2 + 3H2 + 2H+ = CH3OH + 2H2O CO3− 2 + 8H+ + 6e− = CH3OH + 2H2O 0.209 0.209 − 121 − 40 21.2
CO3− 2 + 3H2 = CH3OH + 2OH− CO3− 2 + 6H2O + 6e− = CH3OH + 8OH− − 0.619 0.209 358 119 ¡62.8
CO2 + 4H2 = CH4 + 2H2O CO2 + 8H+ + 8e− = CH4 + 2H2O 0.169 0.169 − 130 − 33 22.9
CO2 + 4H2 = CH4 + 2H2O CO2 + 6H2O + 8e− = CH4 + 8OH− − 0.659 0.169 509 127 ¡89.1

Fig. 2. Change in the Gibbs free energy of reaction as a function of pH for the
five HIRCDAMP (hydrogen induced reductive carbonate dissolution and
methane production) reactions described in Table 2; pH2 = 1 μbar, T = 25 ◦C.

Table 2
Free Gibbs energies of five carbonate dissolution and methane formation path-
ways, at standard conditions (ΔrGo), and for the nominal environment described
in the text. In particular, pH2 = 1 μbar, T = 25 ◦C, pH 7 and 10.

Reactions Equation ΔrGo

(kJ/
mol)

ΔrGpH=7

(kJ/mol)
ΔrGpH=10

(kJ/mol)

Methanogenesis 4H2(aq) + HCO3− +

H+ = CH4(aq)+ 3H2O
− 230 2 19

Calcite Dissol. 4H2(aq) + CaCO3 +
2H+ = Ca2+ +

CH4(aq) + 3H2O

− 242 − 3 31

Siderite Dissol. 4H2(aq) + FeCO3 +
2H+ = Fe2+ +

CH4(aq) + 3H2O

− 229 9 43

Ankerite Dissol. 4H2(aq) + (Ca,Fe)
(CO3)2 + 3H+ = Fe2+

+ Ca2+ + CH4(aq) +
3H2O + HCO3−

− 229 14 66

Dolomite
Dissol.

4H2(aq) + (Ca,Mg)
(CO3)2 + 3H+ =Mg2+

+ Ca2+ + CH4(aq) +
3H2O + HCO3−

− 248 − 1 50
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state equilibrium conditions, the equilibrium constant K of Eq. (12)
equals the activity of H2(aq) which, in an indefinitely dilute solution and
an activity coefficient of one, corresponds to Henry's constant KH (in
mol/kg/bar; pH2 = 1 bar). That is, K = KH.1 It follows that increasing
pH2 (and H2(aq)) will drive Eq. (12) to the left, dissociating and oxidising
solvated hydrogen (H2(aq)) and creating the protons and electrons
required for HIRCDAMP. Raising the temperature to expected reservoir
conditions (set arbitrarily at 75 ◦C in this study) will only marginally
raise ΔGr towards positive values, not enough, however, for HIRCDAMP
to become thermodynamically unfavourable again (Fig. 3b) The same
result is obtained with a higher CH4 partial pressure. ΔG will only in-
crease by about 20 kJ/mol when the partial pressure of CH4 increases
from 1 mbar to 5 bars.

It is important to consider here the apparent ‘reactivity’ of H2(aq) as
per Eq. (12). Its low solubility (negative log KH) means that at equilib-
rium, more of its atoms are bound as hydronium ions (H3O+, left side of
Eq. (12)) than as neutral, solvated hydrogen molecules (H2(aq)). It is this
thermodynamic relationship that creates the driving force behind
HIRCDAMP under UHS conditions that is invariably reported in
geochemical modelling studies (see the introduction for cited papers).
Eq. (12), however, also includes the presence of solvated electrons,
destined for the yet oxidised carbonate species. This point is not obvious,
though. First off, the lifetime of a solvated electron in water is on the
order of (hundreds of) femtoseconds (Migus et al., 1987; Novelli et al.,
2023; Wang et al., 2008). This short time window leaves little oppor-
tunity to stray too far from the host molecule to find a suitable electron
acceptor. Novelli et al. (2023) reported a radius of 2.2 nm for the
delocalised solvated electron, which, compared to an effective hydro-
dynamic radius (Schultz and Solomon, 1961) of a solvated hydrogen
molecule of 0.5 nm, (Sabo et al., 2006; Śmiechowski, 2015) allows it
only a 2-fold range around the tiny hydrogen molecule (√(2.2/0.5)).

Moreover, these and other studies on the solvated electron used ra-
diation energy (radiolysis, photo-ionisation) to remove the electron
from the H2O hydrogen in the first place, i.e., the dissociation of solvated
hydrogen is an energy-intensive process. That is, while the reaction in
Eq. (12) per se may be thermodynamically favourable, the associated
activation energy to extract the electron from its innermost shell is high.
One plausible way out of this challenge is the presence of metal and/or
organic catalysts which can act as electron acceptors and shuttles (Van

der Zee and Cervantes, 2009). It is not hard to imagine how the
ephemeral solvated electrons may be captured by the outer membrane
of a bacterial cell that is in direct contact with water where it can be
shuttled/transferred on to a terminal electron acceptor such as C(+4)
(Hernandez and Newman, 2001; Mevers et al., 2019; Pankratova et al.,
2019; Ter Heijne et al., 2018; White et al., 2016). After all, experimental
and natural examples of hydrogenotrophic methanation (or bio-
methanation as it is also called) in the presence of inorganic carbon
(CO2(aq), HCO3− , CO32− ) below 100 ◦C abound in the literature (Angel-
idaki et al., 2011; Dong et al., 2022; Ebigbo et al., 2013; Hagemann
et al., 2016; Panfilov, 2010; Shojaee et al., 2024; Strobel et al., 2020;
Thapa et al., 2022; Van Eerten-Jansen et al., 2012; Wagner and Baller-
stedt, 2013). Note, that the reverse, i.e., methanogenesis inhibition by
microorganisms, is also possible (Thaysen et al., 2021; Würdemann
et al., 2016).

As a result, even though HIRCDAMP reactions are thermodynami-
cally favourable under UHS conditions during H2 injection, all published
literature has shown that they are kinetically inhibited at such reservoir
temperatures unless microorganisms or transition metals acting as cat-
alysts are present, e.g. Jakobsen (2007), Bradley (2016), Lang et al.
(2010).

4.3. Case 3, HIRCDAMP along the electron chain

So far, most of the discussion and, to our knowledge, all recent work
published on UHS (see the introduction for cited papers) have revolved
around HIRCDAMP in the sense of going from the most oxidised form of
carbon (+4) to its most reduced form (− 4). Fig. 4 shows two carbon
Pourbaix plots and illustrates common carbon phases as a function of pH
and Eh. Both plots were created using the standard reduction potentials
calculated from the standard free Gibbs energies compiled in Table 1A
and the Nernst equation at 25 ◦C and molar concentrations of 10− 3. To
represent the stability field of water, a partial pressure of O2 of 1 atmwas
taken for the upper stability limit and three values for the partial pres-
sure of H2(g) (10− 7 atm, 1 atm and 100 atm) were taken to represent the
lower stability limit. Only C(+4), C(0), and C(− 4) appear in Fig. 4a as
other simple organic carbon species with intermediate oxidation states
are deemed metastable with respect to conversion to CH4(g), CO2(g) and
H2O, even in the absence of an oxidant or reductant (Widdel and Musat,
2010). It appears as if HIRCDAMP was a direct, unencumbered path
between C(+4) and C(− 4), along the electron chain. Yet, this may be an
oversimplistic view of what happens in the reservoir. For example, bi-
carbonate (HCO3− ) reduction to oxalate (C2O42− ) involves two electrons
(first two rows in Table 1, Fig. 4b) and shows positive Gibbs free energies
irrespective of the pH endmember (33 kJ/mol at pH––0 and 193 kJ/mol

Fig. 3. Change in the Gibbs free energy as a function of pH for the five HIRCDAMP (hydrogen-induced reductive carbonate dissolution and methane production)
reactions described in Table 2. (a) pH2 = 5 bar, T = 25 ◦C, (b) pH2 = 5 bar, T = 75 ◦C.

1 The phreeqc database provides a log K of − 3.15 for Eqn. (12) whereas the
llnl database gives a value of − 3.105 for log KH. The NIST Chemistry Webbook
(https://doi.org/10.18434/T4D303) reports log KH as − 3.11, all at 25 ◦C and 1
bar.
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at pH =14). The same applies to the reduction of bicarbonate to formate
(HCOO− ), again requiring two electrons (15, 175 kJ/mol). So kick-
starting bicarbonate reduction with two electrons is non-spontaneous.
If more electrons are involved (e.g., bicarbonate reduction to
elemental carbon (C(s)) via four electrons) the Gibbs free energy finally
becomes negative. This does not signify, however, that the reduction
proceeds all the way to methane. The formation of C(0) is kinetically
strongly inhibited and has not been observed in abiotic or biotic envi-
ronments at low temperatures (Widdel andMusat, 2010). Formaldehyde
(HCHO(g)) may be electrolytically reduced to methanol (CH3OH(l)), but
further reduction of methanol does not occur under normal conditions;
rather, methanol may be oxidised to carbonic acid (H2CO3(aq)) or car-
bonates (Bard and Ketelaar, 1976). The same source also observes that
the HCOO− group (formic acid, acetic acid) is not reduced at the mer-
cury electrode in aqueous solutions, possibly because electrochemical
reactions with carbon are quite slow and need a large overpotential (=
electrode potential minus equilibrium potential) to drive them forward.
Consequently, at low potential difference between Er and Eox, the reac-
tion may not even proceed, despite negative Gibbs free energies. Shock
(1990) found that kinetic barriers inhibited the approach to stable
equilibrium in the C-H-O-N system of submarine hot springs, thus pro-
moting the formation of metastable organic carbon species rather than
methane.

This observation was subsequently corroborated in an experimental
study of the reaction of CO2(aq) in the presence of olivine under hydro-
thermal conditions (300 ◦C, 350 bar). Reduction of CO2(aq) to formate
(HCOO−

(aq)) via hydrogen oxidation was found to proceed rapidly but
further reduction to methane was inconsequential, after more than
2500 h of constant heating (McCollom and Seewald, 2001). A follow-up
study (McCollom and Seewald, 2003) showed that reactions between
dissolved CO2 and formate rapidly attained a state of metastable ther-
modynamic equilibrium, at temperatures of 175 ◦C to 260 ◦C, yet again
considerably above targeted UHS storage spaces. Another more recent
example comes from a hydrothermal field study (McDermott et al.,
2015) that found, again, widespread formate formation via CO2(aq)
reduction whereas methane production was restricted to H2-rich fluid
inclusions. It follows that at temperatures typical of UHS in depleted
reservoirs (e.g., 75 ◦C), the kinetics of C(+4) reduction to intermediate
carbon species are likely to be much slower, indicating that, if at all, the
formation of less reduced, metastable species of carbon (especially
formate) may govern abiotic hydrogen consumption.

4.4. Case 4, HIRCDAMP in geochemical models

Because Eq. (12) and those compiled in Table 1 are integral parts of
the PHREEQC (Parkhurst and Appelo, 2013) thermodynamic databases
used almost exclusively in the modelling work published on UHS, it
explains why all modelling approaches discussed in the introduction
yield invariably methane through carbonate reduction, despite kinetics
constraints and unfavourable electrochemical affinity for carbonate
reduction to oxalate and formate, respectively vs. SHE at all pHs. To
avoid the overall impression of high hydrogen reactivity and con-
sumption in the presence of inorganic carbon, which is inconsistent with
experimental observations, PHREEQC allows for the alternative use of
unreactive hydrogen as ‘Hdg’ (among other gases) to express its inert-
ness. That is, instead of using H2(g) as expression for hydrogen gas,
‘Hdg’ can used instead which does not participate in any dissociating
reactions, unless specifically stipulated. This allows circumventing Eq.
(12), yielding modelling results far more aligned with experimental
findings. More generally, while geochemical codes initially treated all
redox reactions under thermodynamic equilibrium, most codes now
allow the decoupling of any (or all) redox species present in the system
to take into account redox disequilibrium (Bethke, 2022), which, as
demonstrated by Lindberg and Runnells (1984) on more than 600
groundwater samples, is a general behaviour of aqueous systems at low
temperatures. Decoupled redox reactions will thus behave indepen-
dently from the overall redox potential of the system, according to their
own reaction kinetics. Recently, an ‘uncoupled redox database’ was
made available to PHREEQC users (https://phreeqcusers.org/index.ph
p?topic=2023.0). These considerations convey the importance of
being circumspect when choosing the right frame of modelling. It does
not mean that carbonates cannot be reduced, or methane formed, but
this will depend on additional factors such as the presence of microbes
and/or catalytic surfaces to overcome the activation energy which,
using H2(g) in PHREEQC, is taken for granted. If kinetic rates are
incorporated into the modelling, they are often only for the dissolutive
part of the HIRCDAMP reactions and not the redox part. There are
evidently modelling papers that do take microbial reductive activity on
UHS into account (Berta et al., 2018; Rotiroti et al., 2018; Shojaee et al.,
2024; Veshareh et al., 2022) but those explicitly addressing the reac-
tivity of hydrogen, either by implementing ‘Hdg’ as a first step (Hemme
and van Berk, 2018), discarding abiotic conditions (Tremosa et al.,
2023), or suppressing methane formation for being too improbable
(Hassannayebi et al., 2019), are still the exception.

Note that the discrepancy between models and experiments is not a
matter of time. Admittedly, experiments are run ‘only’ for weeks or

Fig. 4. Carbon Pourbaix plots illustrating carbon phases as a function of pH and Eh at 25 ◦C and molar concentrations of 10− 3. (a) Only the most stable carbon phases
are represented. Note the small graphite stability field (in black). (b) Metastable carbon phases are depicted.
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months at best, rather than tens or hundreds of years applied in simu-
lations to potentially account for the discrepancy in methane sighting.
However, extrapolating backward the reported quantities of simulation-
based methane to experimental timelines would be plenty to be quan-
tifiable by gas chromatography (GC), capable of analysing traces of this
gas. For example, Zeng et al. (2022) simulates 3.1 millimolar annual
methane generation from reductive carbonate dissolution which would
translate to circa 50 ppmv of methane per month (at 75 ◦C and 100 bar).
This is patently above a regular GC's detection limit for methane.

5. Conclusions

Modelling studies based on purely inorganically mediated HIRC-
DAMP do not accord with most comparable experimental findings.2 This
paper provides a framework and an explanation of why abiotic
hydrogen-driven reductive mobilisation of carbonates and concomitant
methane production as per the reactions in Table 2 is unlikely to occur
naturally under UHS conditions (in particular, ‘low’ temperatures,
below 60–75 ◦C). While thermodynamic considerations suggest that
ΔGr, as a measure of the spontaneity of a geochemical reaction, becomes
more negative with increasing pH2, HIRCDAMP is also T and pH-
dependent and increasingly less exergonic with increasing T (and thus
reservoir depth) and increasing pH (e.g., limestone terrains). By the
same token, UHS projects injecting H2(g) with CO2(g) to prompt bio-
methanation in the underground (Strobel et al., 2020; Wang et al.,
2022), have, from a thermodynamic point of view, prospects to prosper.
While these studies explicitly count on hydrogenotrophic methano-
genesis by archaea, expected to be present in the aqueous phase, the
dissolution of CO2(g) in the porewater will create acidic conditions under
which abiotic HIRCDAMP is spontaneous under all pH2 and T conditions
anticipated in UHS settings, providing the necessary energy to the mi-
croorganisms to drive their metabolism. Thermodynamics also estab-
lishes that carbonates may not be comprehensively reduced to methane
(even under highly reducing conditions) because reduction is a stepwise
process and the first uptake of two electrons is energetically not
favourable under any pH regime (and thus reservoir).

Even under conditions where HIRCDAMP is thermodynamically
favourable, it may not materialise due to kinetic constraints. The
dissociation of hydrogen into protons and electrons (Eq. (12)) requires
high (ionisation) energies meaning the associated activation energy is
very high and not naturally attained -without catalysts/microbes.
Furthermore, this process creates free solvated electrons which have a
very short lifespan of femtoseconds and thus spatially a very short range
to spread beyond their solvation shell to find a suitable electron acceptor
-without microbes acting as electron shuttles. Finally, at low potential
difference between both half redox reactions (low overpotential), car-
bon reduction may not proceed, despite negative Gibbs free energies,
because electrochemical reactions with carbon are quite slow and need a
large overpotential, i.e., electromotive force, to drive them forward.

Consequently, abiotic geochemical modelling studies reporting
considerable HIRCDAMP and thus questioning the long-term suitability
of carbonate-bearing formations for UHS are likely false positives.

As Zhu and Nordstrom (2022) pointed out in their paper ‘Flying
Blind: Geochemical Modeling and Thermodynamic Data Files’: “Auto-
mated software capabilities of computing and graphing cannot be a
substitute for the user's basic background and training in

thermodynamics, chemical kinetics, interfacial processes, and hydro-
geochemistry.” The false positives alluded to in this study are a clear
example of the importance of this statement. We even go a step further
and add that geochemical modelling cannot replace systematic and
rigorous experimental work on the hydrogen-brine-rock system to
further our understanding, so important for successful medium-term
underground storage of hydrogen.
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